Synthesis and Biological Evaluation of Highly Functionalized Analogues of Ingenol

Jeffrey D. Winkler,* Sanghee Kim, Sean Harrison, Nancy E. Lewin, and Peter M. Blumberg*
Contribution from the Department of Chemistry, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, and the Molecular Mechanism of Tumor Promotion Section, Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, Maryland 20892

Received December 10, 1997

Abstract

The synthesis and preliminary biological evaluation of the first analogues of ingenol, a potent activator of protein kinase C, containing all of the oxygen functionality and unsaturation present in the natural product, is described.

Introduction

The identification of cellular signaling systems and the design and synthesis of small molecules that regulate these systems is at the forefront of modern drug design. ${ }^{1}$ Protein kinase C is a central mediator of cellular signal transduction for a large class of hormones and cellular effectors that generate the lipophilic secondary messenger $s n$-1,2-diacylglycerol, e.g., through activation of phosphatidylinositol 4,5-bis(phosphate) turnover. ${ }^{2}$ Several structurally diverse, naturally occurring compounds including bryostatin, teleocidin, aplysiatoxin, and esters of phorbol, $\mathbf{1}$, and ingenol, $2(\mathrm{R}=\mathrm{H}$; Chart 1$)$, mimic the function of diacylglycerol, the endogenous activator of protein kinase C (PKC), but possess much greater potency. ${ }^{3}$ The synthesis and study of specifically modified derivatives of these natural product leads should establish the structural requirements for the activation of PKC that are common to these dissimilar substances and ultimately lead to the development of new therapeutic agents for the treatment of inflammatory and proliferative diseases. ${ }^{4,5}$ We describe herein the synthesis and preliminary biological evaluation of the most highly functionalized analogues of ingenol prepared to date, containing all of the oxygen functionality and unsaturation present in the natural product. ${ }^{6,7}$ These

[^0]
Chart 1

1

2

new compounds are significantly more potent than our previously described analogue $3^{7 j}$ and point to the significance of hydrophobic effects in the interaction of ingenol with the PKC receptor.

Results and Discussion

The conversion of the previously described photoadditionfragmentation product $\mathbf{4}^{7 \mathrm{~d}}$ to $\mathbf{1 8}$, the first ingenol analogue containing all of the unsaturation and oxygen functionality in the natural product, is outlined in Scheme 1. The first key transformation involves the regioselective introduction of the $\Delta^{5,6}$ unsaturation in 6. While we had previously reported that selenation/oxidation of $\mathbf{4}$ led to the selective formation of the $\Delta^{6,7}$-unsaturated ester 5, we have discovered that reaction of $\mathbf{4}$ with NBS/AIBN in refluxing carbon tetrachloride, followed by treatment of the derived mixture of α-bromoesters with excess

[^1]
Scheme 1

lithium chloride in refluxing DMF, leads to the exclusive formation of the $\Delta^{5,6}$-unsaturated ester 6 (with concomitant removal of the methyl carbonate).

While the direct functionalization of the $\Delta^{5,6}$ alkene by either epoxidation or dihydroxylation could not be realized, reaction of 6 with methanesulfonyl chloride followed by treatment with base led to the formation of the diene ester 7 in excellent yield. Epoxidation of $\mathbf{7}$ with $m \mathrm{CPBA}$ occurred with complete regioand stereochemical control to give 8 . Treatment of the epoxyunsaturated ester $\mathbf{8}$ with osmium tetroxide led to the exclusive formation of epoxy diol 9 . The difference in reactivity between 6 and $\mathbf{8}$ can be attributed to the change in conformation effected by the introduction of the $\Delta^{3,4}$ epoxide, reducing the steric hindrance about C-5 and leading to the formation of 9 . Reaction of epoxy diol 9 with camphorsulfonic acid in wet dichloromethane gave the corresponding tetraol, which on exposure to p-anisaldehyde dimethyl acetal produced $\mathbf{1 0}$ as a single isomer.

The selective elimination of the C-6 hydroxyl group to generate the requisite $\Delta^{6,7}$ unsaturation could not be achieved under a variety of reaction conditions on either the ester $\mathbf{1 0}$ or the derived silyl ether 11. However, we found that reaction of the derived cyclic sulfate $\mathbf{1 2}$ with DBU led, after acidic workup, to the formation of the desired allylic alcohol 13, thereby completing the functionalization of the B ring of ingenol. Oxidative cleavage of the PMP acetal of $\mathbf{1 3}$ led to the regioselective formation of the $\mathrm{C}-3$ ester $\mathbf{1 4}$, which on treatment with p-anisaldehyde dimethyl acetal gave the acetal 15. Ester hydrolysis followed by oxidation gave the C-3 ketone $\mathbf{1 6}$. Selenation and oxidation of $\mathbf{1 6}$ afforded enone 17. Luche reduction of $\mathbf{1 7}$ proceeded stereoselectively to generate exclusively the C-3 β alcohol, which upon benzoylation and sequential deprotection of the silyl ether and PMP acetal gave 18.

The C-3 monobenzoate $\mathbf{1 8}$ was evaluated for its ability to interact with the regulatory site on protein kinase C , as quantitated by inhibition of $\left[{ }^{3} \mathrm{H}\right]$ PDBU binding to protein kinase $\mathrm{C}-\alpha$ reconstituted in the presence of $100 \mu \mathrm{~g} / \mathrm{mL}$ phosphati-

Chart 2

dylserine and $0.1 \mathrm{mM} \mathrm{Ca}{ }^{2+}$, and incubated for 5 min at $37^{\circ} \mathrm{C} . .^{7 \mathrm{j}}$ The curves for inhibition of $\left[{ }^{3} \mathrm{H}\right]$ PDBU binding, obtained using a large excess of ligand, were consistent with a competitive mechanism. Under these conditions, ingenol 3-monobenzoate, $2(\mathrm{R}=\mathrm{PhCO})$, had yielded an apparent K_{i} of $0.15 \pm 0.03 \mathrm{nM}$ (mean \pm SEM, $n=4$) for protein kinase C- $\alpha, 3$ had a K_{i} of $165 \pm 21 \mathrm{nM}$ (mean \pm SEM, $n=3$), and the more highly functionalized analogue $\mathbf{1 8}$ had a K_{i} of $46 \pm 8 \mathrm{nM}$ (mean \pm SEM, $n=3$).

These data establish the significance of the A ring unsaturation and the B ring oxygen functionalities, all of which are present in $\mathbf{1 8}$ but not in the previously described analogue $\mathbf{3}$ (Chart 2), on the binding affinity of ingenol to PKC. These compounds have been prepared as racemates, so the biological activity of the corresponding scalemic analogues is almost certainly greater than that reported here. While these synthetic efforts have resulted in a ca. 3-fold increase in binding affinity (46 nM for $\mathbf{1 8}$ vs 165 nM for $\mathbf{3}$), there remains a ca. 10^{2}-fold difference between 18 and ingenol 3-monobenzoate, $2(\mathrm{R}=$ PhCO), indicating that the $\mathrm{C}-2$ and $\mathrm{C}-11$ methyl groups and the dimethylcyclopropane play an important role in the binding of ingenol to the regulatory domain of PKC..8,9 These data do
not, however, distinguish between the role of the increased hydrophobicity and the increased rigidity imparted by these three substituents.

To probe the role of hydrophobicity on the binding affinity of ingenol to PKC, we have examined 19 and 20, both of which contain more hydrophobic C-3 esters than $\mathbf{1 8}$. We have found that the C-3 myristate 20 has a K_{i} of $25 \pm 8 \mathrm{nM}$ (mean \pm SEM, $n=3$) and that the C-3 nonanoate 19 has a K_{i} of $18 \pm 3 \mathrm{nM}$ (mean \pm SEM, $n=3$). These more hydrophobic esters are ca. 2-3 times more active than the C-3 benzoate $\mathbf{1 8}$ and, therefore, a full order of magnitude more potent than the previously described analogue 3. Incremental introduction of the remaining functionalities of ingenol should lead to the establishment of the relative importance of conformational vs hydrophobic effects on the binding affinity of these ligands to PKC. The synthesis of such analogues is currently underway, and our results will be reported in due course.

Experimental Section

Unsaturated Ester 6. To a solution of ester $4(919.8 \mathrm{mg}, 2.720$ mmol) in dry CCl_{4} were added NBS ($726 \mathrm{mg}, 4.08 \mathrm{mmol}$) and AIBN $(10 \mathrm{mg})$ at $25{ }^{\circ} \mathrm{C}$. The mixture was heated to reflux under an Ar atmosphere. After 20 h , additional NBS ($242 \mathrm{mg}, 1.36 \mathrm{mmol}$) and AIBN $(5 \mathrm{mg})$ were added to ensure complete consumption of the starting ester. After refluxing for a total of 24 h , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. The precipitated solid was removed by filtration, and the filtrate was concentrated to give 1.13 g of a mixture of α-bromo-esters $(1 / 1.3$ ratio by proton NMR). A mixture of the resulting crude α-bromo-esters $(1.13 \mathrm{~g})$ and $\mathrm{LiCl}(576 \mathrm{mg}, 13.6 \mathrm{mmol})$ in dry DMF $(27 \mathrm{~mL})$ was heated to reflux for 2 h . The resulting solution was diluted with EtOAc $(200 \mathrm{~mL})$ and washed with brine $(100 \mathrm{~mL} \times 2)$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and chromatographed (hexane/EtOAc $=2 / 1)$ to afford unsaturated ester $6(452 \mathrm{mg}, 60 \%$ for two steps $)$ and 5 (49 mg, 5\% for two steps) as an oil.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.78(\mathrm{dd}, 1 \mathrm{H}, J=4.2,2.0 \mathrm{~Hz})$, $3.96(\mathrm{dd}, 1 \mathrm{H}, J=10.9,5.3 \mathrm{~Hz}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dddd}, 1 \mathrm{H}, J=9.4$, $9.4,2.5,2.5 \mathrm{~Hz}), 2.87(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 2.61-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.40-$ $2.30(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{bs}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.45(\mathrm{~m}, 7 \mathrm{H})$, $1.32(\mathrm{ddd}, 1 \mathrm{H}, J=12.7,6.1,6.1 \mathrm{~Hz}), 1.18-1.10(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 213.89,168.05,142.17,132.38,80.55,63.66$, 58.48, 52.04, 48.80, 43.08, 33.36, 32.67, 29.94, 28.62, 27.94, 25.75. IR (neat, cm^{-1}): 3500, 2950, 2900, 1720. Exact mass calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$, 278.1518; found, 278.1523.

Diene Ester 7. To a solution of the alcohol $6(410 \mathrm{mg}, 1.473 \mathrm{mmol})$ and triethylamine ($0.62 \mathrm{~mL}, 4.42 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.4 \mathrm{~mL})$ was added dropwise $\mathrm{MsCl}(0.17 \mathrm{~mL}, 2.21 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After stirring for 20 min at $25^{\circ} \mathrm{C}$, the reaction mixture was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and then diluted with EtOAc $(100 \mathrm{~mL})$, and the organic layer was washed with brine $(2 \times 20 \mathrm{~mL})$. The resulting organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a quantitative yield of mesylate (525 mg) which was used in the next step without purification. A solution of mesylate ($525 \mathrm{mg}, 1.473$ $\mathrm{mmol})$ and DBU $(0.45 \mathrm{~mL}, 2.95 \mathrm{mmol})$ in dry benzene $(7.4 \mathrm{~mL})$ was heated to reflux for 2 h . After cooling to ambient temperature, the reaction mixture was diluted with ether $(70 \mathrm{~mL})$ and washed with 5% $\mathrm{HCl}(30 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$. The resulting organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, and the resulting oil was chromatographed (hexane/EtOAc $=4 / 1$) to afford diene ester 7 ($312 \mathrm{mg}, 81 \%$) as an oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{bs}, 1 \mathrm{H}) 3.71(\mathrm{~s}$, $3 \mathrm{H}), 3.47(\mathrm{t}, 1 \mathrm{H}, J=12.1 \mathrm{~Hz}), 2.64-2.41(\mathrm{~m}, 4 \mathrm{H}), 2.33(\mathrm{ddd}, 1 \mathrm{H}, J$
(8) For a discussion of the role of the corresponding methyl group in the phorbol esters, see: Sugita, K.; Neville, C.; Sodeoka, M.; Sasai, H.; Shibasaki, M. Tetrahedron Lett. 1995, 1067.
(9) For a recent discussion of the possible role of the ingenol cyclopropane, see: Krauter, G.; Von Der Lieth, C.; Schmidt, R.; Hecker, E. Eur. J. Biochem. 1996, 242, 417. For a discussion of the role of the cyclopropane ring of phorbol in the crystal structure of the PKC activator-binding domain in complex with phorbol 13-acetate, see: Zhang, G.; Kazanietz, M. G.; Blumberg, P. M.; Hurley, J. H. Cell 1995, 81, 917-924.
$=17.7,8.0,3.7 \mathrm{~Hz}), 2.12(\mathrm{dd}, 1 \mathrm{H}, J=14.3,7.7 \mathrm{~Hz}), 1.95-1.65(\mathrm{~m}$, $5 \mathrm{H}), 1.57(\mathrm{dd}, 1 \mathrm{H}, J=12.0,5.9 \mathrm{~Hz}), 1.49-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{q}, 1 \mathrm{H}$, $J=12.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 215.5,168.75,144.88$, $143.70,135.04,129.19,67.16,52.05,49.56,34.79,33.21,32.31,30.19$, 30.03, 29.91, 25.85. IR (neat, cm^{-1}): 2973, 1736, 1708. Exact mass calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$, 260.1412 ; found, 260.1407.

Epoxide 8. To a solution of the diene ester $7(312 \mathrm{mg}, 1.199 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$ was added $m \mathrm{CPBA}(70 \%, 443 \mathrm{mg}, 1.80 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(302 \mathrm{mg}, 3.6 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. The resulting suspension was allowed to stir for 3 h at $25^{\circ} \mathrm{C}$ and then treated with saturated aqueous $\mathrm{NaHSO}_{3}(10 \mathrm{~mL})$. The resulting mixture was diluted with ether $(100 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The resulting organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concenterated, and chromatographed (hexane/EtOAc $=4 / 1$) to give epoxide $8(168.1 \mathrm{mg}, 61 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 6.29(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 3.70(\mathrm{~s}$, $3 \mathrm{H}), 3.47(\mathrm{~d}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}), 3.42$ (dddd, $1 \mathrm{H}, J=11.9,11.9,2.6,2.6$ $\mathrm{Hz}), 2.86(\mathrm{ddd}, 1 \mathrm{H}, J=13.1,9.9,9.9 \mathrm{~Hz}), 2.63-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.20$ $(\mathrm{dd}, 1 \mathrm{H}, J=14.5,12.0 \mathrm{~Hz}), 2.04-1.30(\mathrm{~m}, 9 \mathrm{H}), 1.01(\mathrm{q}, 1 \mathrm{H}, J=$ $12.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 214.37,167.31,140.38$, $136.89,70.96,70.70,62.86,52.25,49.86,34.99,34.81,32.77,30.11$, 29.69, 25.93, 25.41. IR (neat, cm^{-1}): 2930, 2853, 1716, 1614. Exact mass calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$, 276.1362; found, 276.1350. Mp $115-116^{\circ} \mathrm{C}$.

Epoxydiol 9. To a stirred solution of the epoxy ester 8 (97 mg , 0.351 mmol) in 8 mL of THF, $\mathrm{t}-\mathrm{BuOH}$, and water ($2: 1: 1$) was added $\mathrm{OsO}_{4}\left(0.45 \mathrm{~mL}, 4 \mathrm{wt} \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 0.07 \mathrm{mmol}\right)$ followed by NMO (82 $\mathrm{mg}, 0.7 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. The resulting mixture was allowed to stir at $25^{\circ} \mathrm{C}$ for 18 h and was then washed with saturated aqueous NaHSO_{3} $(2 \mathrm{~mL})$ and brine $(25 \mathrm{~mL})$ and then extracted with EtOAc $(4 \times 20$ $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, concenterated, and chromatographed (hexane/EtOAc $=2 / 3$) to give epoxy diol 9 (91 $\mathrm{mg}, 84 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 4.17(\mathrm{t}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 3.75(\mathrm{~d}$, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.18(\mathrm{~d}, 1 \mathrm{H}, J=6.4$ $\mathrm{Hz}, \mathrm{OH}), 3.15(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 2.58(\mathrm{ddd}, 1 \mathrm{H}, J=15.6,8.6,7.0$ $\mathrm{Hz}), 2.43(\mathrm{t}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 2.38(\mathrm{t}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 2.00-1.44$ $(\mathrm{m}, 9 \mathrm{H}), 1.23-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{dq}, 1 \mathrm{H}, J=14.7,2.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 214.25,174.93,79.83,78.14,69.99,63.63$, 63.07, 53.14, 45.49, 38.44, 34.34, 33.30, 29.96, 29.77, 25.63, 25.34. IR (neat, cm^{-1}): 3468, 2938, 2856, 1733. Exact mass calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{6}\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 311.1494; found, 311.1492. Mp 149-150 ${ }^{\circ} \mathrm{C}$.

Acetal 10. A solution of epoxy diol $9(830 \mathrm{mg}, 2.70 \mathrm{mmol})$, water ($90 \mu \mathrm{~L}, 5 \mathrm{mmol}$), and camphorsulfonic acid ($46 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(50 \mathrm{~mL})$ was allowed to stand at $25^{\circ} \mathrm{C}$ for 1 h and was then treated with p-anisaldehyde dimethyl acetal ($10 \mathrm{~mL}, 1.7 \mathrm{~mL}$). The resulting solution was allowed to stand for 16 h at $25^{\circ} \mathrm{C}$ and was then neutralized with triethylamine $(0.2 \mathrm{~mL})$. Concentration in vacuo followed by flash chromatography of the residue (hexane/EtOAc $=2 / 1$) provided acetal $10(810 \mathrm{mg}, 67 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.26(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 6.84(\mathrm{~d}$, $2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~d}, 1 \mathrm{H}$, $J=5.4 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{dd}, 1 \mathrm{H}, J=12.4,12.6$ $\mathrm{Hz}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{dd}, 1 \mathrm{H}, J=13.1,13.1$ $\mathrm{Hz}), 2.03-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{dd}, 1 \mathrm{H}, J=25.6$, $13.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 215.67,174.54,161.50$, $131.64,127.73,113.96,98.42,89.03,86.49,82.40,70.58,66.45,55.73$, $53.22,46.50,40.14,31.25,30.91,30.51,30.20,29.59,25.23$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3427,2930,1731$. Exact mass calculated for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{8}\left(\mathrm{M}^{+}+\right.$ H), 447.2018; found, 447.2025. Mp 82-84 ${ }^{\circ} \mathrm{C}$.

Silyl ether 11. To a stirred solution of the ester $\mathbf{1 0}(728 \mathrm{mg}, 1.63$ mmol) in dry THF (7 mL) was added $\mathrm{LiAlH}_{4}(124 \mathrm{mg}, 3.26 \mathrm{mmol})$ in two portions over 0.5 h at $25^{\circ} \mathrm{C}$. After being stirred for an additional 0.5 h under Ar atmosphere, the reaction was quenched with water (0.5 mL), and the resulting mixture was treated with 0.5 mL of 1 N NaOH followed by water $(1.5 \mathrm{~mL})$. The resulting mixture was stirred for 1 h at $25^{\circ} \mathrm{C}$ and then filtered through a Celite pad (EtOAc eluent). The filtrate was concentrated to afford the intermediate diol which was used without purification in the next step.

To a solution of the crude triol, triethylamine $(2.1 \mathrm{~mL}, 15 \mathrm{mmol})$, and DMAP ($12 \mathrm{mg}, 0.1 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added

TBDPSCl $(1.3 \mathrm{~mL}, 5 \mathrm{mmol})$ in three portions over 24 h at $25^{\circ} \mathrm{C}$. After standing for 24 h , the reaction was concentrated in vacuo, and the residue was treated with hexane and EtOAc (1/1). The resulting suspension was filtered through a small silica gel pad. Concentration of the filtrate and silica gel chromatography of the residue (hexane/ $\mathrm{EtOAc}=2 / 1)$ gave $\mathbf{1 1}(910 \mathrm{mg}, 85 \%)$ as an oil.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.52(\mathrm{dd}, 2 \mathrm{H}, J=1.4,6.0 \mathrm{~Hz})$, $7.51-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{bs}$, $1 \mathrm{H}), 3.96(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 1 \mathrm{H}), 2.92(\mathrm{~d}, 1 \mathrm{H}$, $J=10.1 \mathrm{~Hz}), 2.48(\mathrm{dd}, 1 \mathrm{H}, J=13.1 \mathrm{~Hz}), 2.40(\mathrm{ddd}, 1 \mathrm{H}, J=6.0$, $14.1,14.1 \mathrm{~Hz}), 1.99-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 5 \mathrm{H}), 1.67-1.59$ $(\mathrm{m}, 1 \mathrm{H}), 1.50-1.36(\mathrm{~m}, 5 \mathrm{H}), 1.13-1.03(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 215.90,159.73,135.62,135.46,132.78$, $132.73,130.84,129.90,129.84,128.78,127.76,127.05,113.53,97.51$, $88.04,87.47,81.03,70.24,69.54,65.96,55.18,45.78,40.19,31.36$, $30.55,30.26,30.10,28.97,26.94,24.88,19.30$. IR (neat, cm^{-1}): 3400, 2930, 1720.

Cyclic sulfate 12. To a solution of diol $\mathbf{1 1}(118 \mathrm{mg}, 0.222 \mathrm{mmol})$ in dry pyridine $(0.1 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added thionyl chloride (16 $\mu \mathrm{L}, 0.222 \mathrm{mmol})$. The resulting solution was then allowed to stir for 10 min at $25^{\circ} \mathrm{C}$ under Ar atmosphere. The solution was diluted with EtOAc (25 mL) and was then washed with saturated aqueous CuSO_{4} $(15 \times 2 \mathrm{~mL})$ and water $(15 \mathrm{~mL})$. The resulting organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the crude cyclic sulfite which was submitted to the following oxidation conditions without further purification.

To a solution of the cyclic sulfite in $\mathrm{CCl}_{4}(1 \mathrm{~mL})$, acetonitrile (1 $\mathrm{mL})$, and water (1 mL) was added RuCl_{3} hydrate $(2.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ followed by $\mathrm{NaIO}_{4}(64.2 \mathrm{mg}, 0.3 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. The resulting biphasic soultion was allowed to stir for 3 h at $25^{\circ} \mathrm{C}$ and then diluted with $\mathrm{EtOAc}(30 \mathrm{~mL})$ and washed with brine $(15 \mathrm{~mL})$. The resulting organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and purified by chromatography (hexane/EtOAc $=4 / 1$) to give cyclic sulfate 12 ($117 \mathrm{mg}, 85 \%$).
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.58(\mathrm{dd}, 2 \mathrm{H}, J=1.4,8.0 \mathrm{~Hz})$, $7.49(\mathrm{dd}, 2 \mathrm{H}, J=1.4,9.1 \mathrm{~Hz}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{dd}, 2 \mathrm{H}, J=$ $1.6,6.8 \mathrm{~Hz}), 6.67(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.2 \mathrm{~Hz}), 4.04(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~d}$, $1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 3.15(\mathrm{dd}, 1 \mathrm{H}, J=12.4,12.4 \mathrm{~Hz}), 2.50-2.43(\mathrm{~m}$, $1 \mathrm{H}), 2.33(\mathrm{dd}, 1 \mathrm{H}, J=13.3,13.3 \mathrm{~Hz}), 2.14(\mathrm{dd}, 1 \mathrm{H}, J=1.7,14.6$ $\mathrm{Hz}), 2.06-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.77$ (ddd, $1 \mathrm{H}, J=5.3,12.0,17.2 \mathrm{~Hz}), 1.65-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.46(\mathrm{~m}$, $2 \mathrm{H}), 1.13-1.04(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $\delta 213.06,160.12,135.67,135.52,132.75,132.24,129.96,129.81$, $129.59,127.83,127.75,127.09,113.77,99.70,99.52,97.14,83.75$, $67.35,66.72,65.31,55.22,45.77,37.49,32.54,29.87,29.83,29.78$, 29.67, 26.84, 24.86, 19.22. IR (neat, cm^{-1}): 2932, 2858, 1734. Exact mass calculated for $\mathrm{C}_{39} \mathrm{H}_{47} \mathrm{O}_{9} \mathrm{SSi}\left(\mathrm{M}^{+}+\mathrm{H}\right), 719.2709$; found, 719.2701. Mp $108-111{ }^{\circ} \mathrm{C}$.

Alkene 13. A solution of cyclic sulfate $12(730 \mathrm{mg}, 0.197 \mathrm{mmol})$ and DBU $(0.35 \mathrm{~mL}, 2.53 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ was heated to reflux for 2.5 h . After cooling to $25^{\circ} \mathrm{C}$, the resulting solution was treated with 1% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ in THF $\left(5 \mathrm{~mL}, \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}=1 / 9\right)$ and stirred for 1.5 h at $25^{\circ} \mathrm{C}$. The solution was diluted with EtOAc (150 mL) and washed with saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and purified by column chromatography (hexane/EtOAc $=1 / 2$) to give 13 ($276 \mathrm{mg}, 43 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.59(\mathrm{dd}, 2 \mathrm{H}, J=1.3,7.9 \mathrm{~Hz})$, $7.55(\mathrm{dd}, 2 \mathrm{H}, J=1.4,8.0 \mathrm{~Hz}), 7.40-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{dd}, 2 \mathrm{H}, J=$ $1.8,6.8 \mathrm{~Hz}), 6.64(\mathrm{dd}, 2 \mathrm{H}, J=2.0,8.7 \mathrm{~Hz}), 6.07(\mathrm{bs}, 1 \mathrm{H}), 5.64(\mathrm{~s}$, $1 \mathrm{H}), 4.25(\mathrm{bs}, 1 \mathrm{H}), 4.15(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 4.08(\mathrm{bd}, 1 \mathrm{H}, J=12.9$ $\mathrm{Hz}), 3.92(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.79(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.12(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{dd}, 1 \mathrm{H}, J=13.1,13.1 \mathrm{~Hz}), 2.29(\mathrm{ddd}, 1 \mathrm{H}, J=6.1$, $6.1,13.9 \mathrm{~Hz}), 2.06$ (dddd, $1 \mathrm{H}, J=6.2,6.2,14.0,14.0 \mathrm{~Hz}), 1.92-1.77$ $(\mathrm{m}, 4 \mathrm{H}), 1.31-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.14-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 209.42,159.76,135.53,135.45,135.31$, $133.73,133.58,130.96,129.51,129.49,127.60,127.57,126.97,124.83$, $113.51,97.35,88.24,84.17,71.74,64.92,64.22,55.19,48.15,30.30$, $29.84,29.74,29.19,27.28,26.86,25.39,19.22$. IR (neat, cm^{-1}): 3454, 2931, 2856, 1731. Exact mass calculated for $\mathrm{C}_{39} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{SiNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, 661.2961; found, 661.2954. Mp 151-153 ${ }^{\circ} \mathrm{C}$.

PMB Ester 14. A solution of acetal $\mathbf{1 3}(265 \mathrm{mg}, 0.414 \mathrm{mmol})$ and DDQ ($141 \mathrm{mg}, 0.621 \mathrm{mmol}$) in methylene chloride (4 mL) and water $(0.2 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ for 7 h . Concentration of the resulting mixture in vacuo followed by flash chromatography of the residue (hexane/EtOAc/CH2 $\mathrm{Cl}_{2}=1 / 1 / 0.1$) provided 265 mg (98% combined yield) of anisate $\mathbf{1 4}$ contaminated with the corresponding C-5 ester $\mathbf{1 4 a}$ in a 3:1 ratio.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$, major isomer): $\delta 7.65(\mathrm{~d}, 2 \mathrm{H}, J=7.0$ $\mathrm{Hz}), 7.46-7.27(\mathrm{~m}, 10 \mathrm{H}), 6.80(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 5.88(\mathrm{~d}, 1 \mathrm{H}, J=$ $6.4 \mathrm{~Hz}), 5.04(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 4.77(\mathrm{dd}, 1 \mathrm{H}, J=6.4,12.3 \mathrm{~Hz})$, $4.26(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 3.95(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.70$ $(\mathrm{d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 3.66(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}), 2.90-2.85(\mathrm{~m}, 1 \mathrm{H})$, $2.50-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.18-$ $1.106(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDC}_{3}, 125 \mathrm{MHz}\right.$, mixture of isomers): $\delta 207.81,165.33,163.37,141.58,135.84,135.57,135.33$, $135.29,133.05,132.66,131.80,131.68,129.91,129.87,129.82,129.73$, 128.27, 127.81, 127.76, 127.70, 122.16, 114.01, 113.60, 85.56, 84.37, $77.15,75.42,68.03,67.48,55.53,55.30,47.06,35.92,30.21,29.32$, 28.54, 26.76, 26.67, 25.15, 19.09. IR (neat, cm^{-1}): 3449, 2933, 1714. Exact mass calculated for $\mathrm{C}_{39} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, 667.2910; found, 667.2925.

PMP Acetal 15. To a solution the C-3 and C-5 anisates $\mathbf{1 4}$ and $\mathbf{1 4 a}$ ($260 \mathrm{mg}, 0.397 \mathrm{mmol}, 3: 1 \mathrm{mixture}$) in methylene chloride under Ar was added p-anisaldehyde dimethyl acetal $(0.270 \mathrm{~mL}, 289 \mathrm{mg}, 1.59$ $\mathrm{mmol})$. Camphorsulfonic acid ($10 \mathrm{mg}, 0.040 \mathrm{mmol}$) was added, and the mixture was stirred at $25^{\circ} \mathrm{C}$ under Ar for 12 h . The reaction was then neturalized by the addition of $\mathrm{Et}_{3} \mathrm{~N}(10 \mu \mathrm{~L})$. The resulting mixture was concentrated under reduced pressure and purified by silica gel chromatography (hexane/EtOAc $=7 / 1$) to yield the acetal $15(178 \mathrm{mg}$, 81% based on 75% purity of starting material) as a white solid (mp $200-201^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 0.92(\mathrm{~s}, 9 \mathrm{H}), 1.01-1.10(\mathrm{~m}, 1 \mathrm{H})$, $1.23-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=7.5,14.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.82-1.87(\mathrm{~m}, 2 \mathrm{H}) 1.91-2.05(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{dd}, J=12.2,14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.94$ (ddd, $J=7.4,13.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.78(\mathrm{~m}, 4 \mathrm{H})$, $3.92(\mathrm{~d}, J=14.5,1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=6.9,11.7,1 \mathrm{H}), 5.13$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.31$ $(\mathrm{d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 19.22,24.75,26.70,27.18,28.28,29.83,30.37$ $37.08,48.31,55.35,65.58,66.45,83.24,83.56,92.11,103.04,113.88$, $113.92,121.80,127.56,127.64,127.94,128.22,129.54,129.60,129.74$, $131.90,133.09,133.28,135.28,135.32,135.63,160.65,163.60,165.19$, 208.52. IR (neat, cm^{-1}): 2932, 2856, 1721. Exact mass calculated for $\mathrm{C}_{47} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{SiNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, 795.3329; found, 795.3324.

Ketone 16. To a solution of the anisate $\mathbf{1 5}(170 \mathrm{mg}, 0.232 \mathrm{mmol})$ in $4: 1$ methanol:THF (50 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$, and the resulting solution was allowed to stir at $25^{\circ} \mathrm{C}$ for 12 h . The solution was then poured into $\mathrm{CHCl}_{3}(200 \mathrm{~mL})$ and diluted with water $(100 \mathrm{~mL})$, and the separated aqueous layer was washed with $\mathrm{CHCl}_{3}(2 \times 200 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The resulting yellow oil was purified by silica gel chromatography ($\mathrm{EtOAc} / \mathrm{THF} / \mathrm{MeOH}=81 / 14 / 5 / 2$) to yield the deprotected alcohol ($153 \mathrm{mg},>100 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{dd}, J=8.6$, $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.76(\mathrm{~m}$, $5 \mathrm{H}), 1.83-1.95(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{dd}, J=11.9,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (ddd, $J=7.2,13.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.16(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{dd}, J=7.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}$, $1 \mathrm{H}), 6.20(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.42$ (m, 6H) $7.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.65(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 19.20,24.69,26.74,26.84,29.60,29.99,30.29$, $37.25,48.34,55.30,64.93,67.13,81.41,82.76,93.24,102.94,113.85$, $127.72,127.74,128.04,128.37,129.75,129.78,131.75,133.10,135.46$, 135.61, 135.65, 160.48, 209.17. IR (neat, cm^{-1}): 3486, 2932, 1723.

To a solution of the forementioned C-3 α-alcohol ($150 \mathrm{mg}, 0.234$ $\mathrm{mmol})$ in methylene chloride (3 mL) at $25^{\circ} \mathrm{C}$ was added the DessMartin periodinane reagent $(130 \mathrm{mg}, 0.304 \mathrm{mmol})$. After 10 min , an additional 130 mg of the Dess-Martin reagent was added. Over the next 4 h , an additional 550 mg of the Dess-Martin reagent was added
in portions. The resulting mixture was then treated with isopropyl alcohol $(0.15 \mathrm{~mL})$ followed by $\mathrm{NaOH}(1.5 \mathrm{M}, 5 \mathrm{~mL})$, and the resulting mixture was stirred for 10 min . The reaction mixture was diluted with EtOAc (15 mL) and washed with $\mathrm{NaOH}(1.5 \mathrm{M}, 5 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (hexane/EtOAc/MeOH $=5 / 1 / 0.1$) to yield the pure ketone (72 mg , 48\%).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.01(\mathrm{~s}, 9 \mathrm{H}) 1.03-1.10(\mathrm{~m}, 1 \mathrm{H})$, $1.32-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{ddd}, J=7.7,12.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{dd}$, $J=7.7,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.88(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.42$ (ddd, $J=2.2,7.6,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=2.3,8.9,12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.06(A B, J=1.4,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{dd}, J=6.7$, $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=6.02 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.58-7.62(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 19.60,25.06$, $27.07,27.14,28.08,30.50,36.59,37.42,49.10,55.73,64.70,67.08$, $84.94,85.62,105.13,114.32,128.13,128.14,128.26,128.41,130.14$, $130.15,132.94,133.55,133.60,135.25,135.98,161.02,208.12,216.35$. IR (neat, cm^{-1}): 2931, 1749, 1724. Exact mass calculated for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{O}_{6}{ }^{-}$ $\operatorname{SiNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, 659.2805; found, 659.2827.

Enone 17. A solution of $\mathbf{1 6}(8.8 \mathrm{mg}, 0.0138 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ while stirring under Ar, treated with LHMDS (1.0 M in THF, $0.041 \mathrm{~mL}, 0.041 \mathrm{mmol}$), and stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h. Phenylselenyl chloride ($8 \mathrm{mg}, 0.041 \mathrm{mmol}$) was added, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was then treated with saturated $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$ and allowed to warm to $25^{\circ} \mathrm{C}$. Brine (5 mL) was added, and the resulting mixture was extracted with EtOAc $(15+5 \mathrm{~mL})$. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure to give the crude selenide, which was dissolved in methylene chloride (1 mL) and treated with an aqueous $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution $(100 \mu \mathrm{~L})$. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 0.75 h , and excess $\mathrm{H}_{2} \mathrm{O}_{2}$ was quenched with solid NaHSO_{3} at $0^{\circ} \mathrm{C}$. The resulting mixture was diluted with brine (5 $\mathrm{mL})$ and extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated, and the residue was purified by silica gel chromatography (hexane/EtOAc $=90 / 10$) to yield the enone $\mathbf{1 7}(2.9 \mathrm{mg}, 37 \% \mathrm{brsm})$ and recovered ketone $\mathbf{1 6}$ (1 mg).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 0.99(\mathrm{~s}, 9 \mathrm{H}), 1.30-1.34(\mathrm{~m}, 1 \mathrm{H})$, $1.68(\mathrm{dd}, J=7.7,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.93(\mathrm{~m}, 6 \mathrm{H}), 2.45(\mathrm{dd}, J=$ $11.1,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.05-4.11(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.18(\mathrm{~m}$, $1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.41-7.59$ $(\mathrm{m}, 3 \mathrm{H}), 7.54-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.74(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 19.21,24.84,25.70,26.72,29.78,31.87,49.26$, $55.33,66.61,67.08,81.59,82.49,103.69,127.52,128.28,129.70$, $130.21,130.59,133.07,135.27,135.52,135.58,136.51,160.20,166.20$, 205.65, 205.91. Exact mass calculated for $\mathrm{C}_{39} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{SN}\left(\mathrm{M}^{+}+\mathrm{NH}_{4}{ }^{+}\right)$, 652.3094; found, 652.3080.

Benzoate 18. A solution of $\mathbf{1 7}(2.7 \mathrm{mg}, 0.0043 \mathrm{mmol})$ in methanol $(1 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Cerium(III) chloride heptahydrate (5 mg , 0.014 mmol) was added, and the mixture was stirred for 15 min . Sodium borohydride ($0.5 \mathrm{mg}, 0.013 \mathrm{mmol}$) was added, and the mixture was stirred for 15 min before an equal additional amount of NaBH_{4} was added. After being stirred for an additional 30 min , the reaction mixture was treated with acetone $(0.25 \mathrm{~mL})$ and filtered through a silica gel pad with EtOAc. The eluent was concentrated and purified by silica gel chromatography (hexane/EtOAc $=4 / 1$) to yield the allylic alcohol ($1.8 \mathrm{mg}, 60 \%$).

The allylic alcohol $(1.8 \mathrm{mg}, 0.0028 \mathrm{mmol})$ was dissolved in methylene chloride (1 mL); benzoyl chloride ($4 \mu \mathrm{~L}, 5 \mathrm{mg}, 0.03 \mathrm{mmol}$)
and 4-(dimethylamino)pyridine $(15 \mathrm{mg}, 0.123 \mathrm{mmol})$ were added. The reaction was stirred at room temperature for 0.5 h and was concentrated, filtered and purified by silica gel chromatography (hexane/EtOAc $=$ $90 / 10)$ to yield the benzoylated product ($1.5 \mathrm{mg}, 72 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 0.95-1.01(\mathrm{~m}, 9 \mathrm{H}), 1.28-1.37(\mathrm{~m}$, $1 \mathrm{H}), 1.45-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.92(\mathrm{~m}, 3 \mathrm{H}), 2.48$ $(\mathrm{dd}, J=10.7,14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 4.33-4.39(\mathrm{~m}$, $1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=2.0,6.3 \mathrm{~Hz}$, $1 \mathrm{H}) 6.11-6.13(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.43(\mathrm{~m}, 9 \mathrm{H})$ $7.57-7.61(\mathrm{~m}, 6 \mathrm{H}) 8.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): \delta 19.23,25.12,25.80,26.77,29.44,33.98,47.91,55.31,66.53$, 68.97, $80.9682 .10,89.91,103.85,113.76,127.69,127.91,128.50$, $128.92,129.38,129.67,129.79,129.97,133.26,135.54,135.60,136.35$, 138.16, 160.40, 165.92, 207.59. IR (neat, cm^{-1}): 2930, 1722. Exact mass calculated for $\mathrm{C}_{46} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{SiNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, 763.3067; found, 763.3081.

A $3 \% \mathrm{HCl}$ solution in methanol was prepared by the addition of 1 mL of acetyl chloride to 25 mL of dry methanol. To a solution of the aforementioned benzoate $(1.5 \mathrm{mg}, 0.0020 \mathrm{mmol})$ in diethyl ether $(0.6$ mL) was added the $3 \% \mathrm{HCl} /$ methanol solution $(0.3 \mathrm{~mL})$. The mixture was stirred for 4.5 h , neutralized by the addition of solid $\mathrm{NaHCO}_{3}(20$ mg), and then diluted with 1 mL of EtOAc. The solid was removed by filtration through a silica pad, the eluent was concentrated, and the residue was purified by silica gel chromatography (hexane/EtOAc/ $\mathrm{MeOH}=1 / 1 / 0.1)$ to give the deprotected ingenane benzoate $18(0.271$ $\mathrm{mg}, 35 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.30-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.50(\mathrm{~m}$, $1 \mathrm{H}), 1.56-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{dd}, J=6.0,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=11.0,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.22(\mathrm{~m}, 4 \mathrm{H}), 5.95(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-6.03$ $(2 \mathrm{H}), 6.45(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ $(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$. IR (thin film, $\left.\mathrm{cm}^{-1}\right): 3443,2929,1716$. Exact mass calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}\left(\mathrm{M}^{+}\right.$ +Na), 407.1471; found, 407.1486.

Nonanoate 19. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$, mixture of isomers): δ $0.85-0.87(\mathrm{~m}, 6 \mathrm{H}), 1.16-1.32(\mathrm{~m}, 26 \mathrm{H}), 1.53-1.90(\mathrm{~m}, 14 \mathrm{H}), 2.26-$ $2.42(\mathrm{~m}, 6 \mathrm{H}), 2.85(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 3.78-3.81(\mathrm{~m}$, $2 \mathrm{H}), 4.04(\mathrm{bs}, 2 \mathrm{H}), 4.13-4.19(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.71(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=2.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.94(\mathrm{~m}, 2 \mathrm{H}), 5.98(\mathrm{dd}, J=2.6,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.02(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H})$. IR (thin film, cm^{-1}): 3415, 2925, 2853, 1731. Exact mass calculated for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Na}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, 443.2410; found, 443.2402.

Myristate 20. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 0.85-0.88(\mathrm{~m}, 3 \mathrm{H})$, $1.13-1.31(\mathrm{~m}, 22 \mathrm{H}), 1.57-2.00(\mathrm{~m}, 7 \mathrm{H}), 2.32-2.38(\mathrm{~m}, 3 \mathrm{H}), 3.41(\mathrm{~s}$, $1 \mathrm{H}), 3.75-3.80(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{bs}, 1 \mathrm{H}), 4.14-4.19(\mathrm{~m}, 4 \mathrm{H}), 5.69(\mathrm{~d}, \mathrm{~J}$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.91(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$. IR (thin film, cm^{-1}): 3401, 2907, 2848, 1725. Exact mass calculated for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{Na}\left(\mathrm{M}^{+}+\mathrm{Na}\right), 513.3192$; found: 513.3199 .

Acknowledgment. The generous financial support of the National Institutes of Health (CA45686), SmithKline Beecham, Wyeth-Ayerst, and Pfizer is gratefully acknowledged.

Supporting Information Available: Details of the analysis of the ligand binding studies (2 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA9741842

[^0]: (1) Baringa, M. Science 1997, 278, 1036.
 (2) For recent reviews, see: (a) Blackshear, P. J. J. Biol. Chem. 1993, 268, 1501. (b) Dekker, L. V.; Parker, P. J. Trends Biochem. Sci. 1994, 19, 73.
 (3) (a) Hecker, E. In Carcinogenesis: A Comprehensive Survey, Mechanisms of Tumor Promotion and Cocarcinogenesis; Slaga, T. J., Sivak, A., Boutwell, R. K., Eds.; Raven: New York, 1987; Vol. 2, pp 11-48. (b) Sugimura, T.; Fujiki, H. In Gann Monograph on Cancer Research; Makita, A., Tsuiki, S., Fujiki, H., Warren, L., Eds.; University of Tokyo Press: Tokyo, 1983; Vol. 29, pp 3-15. (c) Mechanisms of Tumor Promotion; Slaga, T. J., Ed.; CRC: Boca Raton, FL, 1993-94; Vols. 1-4. (d) Schmidt, R.; Aitken, A. In Naturally Occurring Phorbol Esters; Evans, F., Ed., CRC Press: Boca Raton, FL, 1986; pp 245-289.
 (4) (a) Jeffrey, A.; Liskamp, R. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 241. (b) Wender, P.; Cribb, C.; Koehler, K.; Sharkey, M.; Herald, C.; Kamano, Y.; Pettit, G.; Blumberg, P. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 7197. (c) Itai, A.; Kato, Y.; Tomioka, N.; Iitaka, Y.; Endo, Y.; Hasegawa, M.; Shudo, K.; Fujiki, H.; Sakai, S. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 3688. (d) Cuthbertson, A.; Thomson, C. J. Mol. Graphics 1987, 192. (e) Thomson, C.; Wilkie, J. Carcinogenesis 1989, 10, 531. (f) Nakamura, H.; Kishi, Y.; Pajares, M.; Rando, R. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 9672.
 (5) Bradshaw, D.; Hill, C.; Nixon, J.; Wilkinson, S. Agents Actions 1993, 38, 135.

[^1]: (6) For recent reviews on the synthesis of ingenanes, see: (a) Kim, S.; Winkler, J. Chem. Soc. Rev. 1997, 26, 387. (b) Rigby, J. Stud. Nat. Prod. Chem. 1993, 12, 233.
 (7) For synthetic studies since 1993, see: (a) Nakamura, T.; Matsui, T.; Tanino, K.; Kuwajima, I. J. Org. Chem. 1997, 62, 3032. (b) Rigby, J.; Claire, V.; Cuisiat, S.; Heeg, M. J. Org. Chem. 1996, 61, 7992. (c) Harmata, M.; Elahmad, S.; Barnes, C. Tetrahedron Lett. 1995, 36, 1397. (d) Winkler, J.; Hong, B.; Bahador, A.; Kazanietz, M.; Blumberg, P. J. Org. Chem. 1995, 60, 1381. (e) Winkler, J.; Hong, B.; Kim, S.; Lewin, N.; Blumberg, P. Synlett 1995, 533. (f) Winkler, J.; Henegar, K.; Hong, B.; Williard, P. J. Am. Chem. Soc. 1994, 116, 4183. (g) Rigby, J.; Cuisiat, S. J. Org. Chem. 1993, 58, 6286. (h) Funk, R.; Olmstead, T.; Parvez, M.; Stallman, J. J. Org. Chem. 1993, 58, 5873. (i) Winkler, J.; Gretler, E.; Williard, P. J. Org. Chem. 1993, 58, 1973. (j) Winkler, J.; Hong, B.; Bahador, A.; Kazanietz, M.; Blumberg, P. Bioorg. Med. Chem. Lett. 1993, 3, 577.

